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Well-Known Saudis Imprisoned for Online Dissent
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Global Rise in Offline Repression of Online Speech

m ~ 4 billion Internet users Freedom on the Net Report 2018
worldwide. T

"@.‘i"«i}

m 71% live in countries where
users have been imprisoned

for online activity. ?

m 48% live in countries where
users have tortured or killed
for online activity.

M Free M Partly Free

M Not free Not assessed



Research Question

m What are the consequences of offline repression for online dissent?

m What does this tell us about the relationship between repression
and dissent more broadly?



Overview

m Goal: Evaluate the effects of offline repression on online dissent.

m Imprisonment of well-known Saudis
(2010-2017)

m Dissent in Saudi Twittersphere
(300M tweets)

m Do we observe deterrence or backlash?
m Arrested, Followers, Non-Arrested, Saudi Public

m Main Finding: While arrests deterred those who were directly
targeted, dissent did not decrease overall.

m Real-time networked data offers new tests in a “black box" context.



Theoretical Motivation

m Offline repression and offline dissent
(Feierabend et al., 1972; Hibbs, 1973; Gurr and Duvall, 1973; Rasler, 1996;
Goldstone and Tilly, 2001; Davenport, 2007; Sullivan and Davenport, 2017;
Davenport, Armstrong and Zeitzoff, 2019)
m Mixed Findings: Deterrence, Backlash, U-Shaped, No Effect

m Online responses to online dissent
(King, Pan and Roberts, 2013, 2014; Simon, 2014; Stukal et al., 2017; Hobbs
and Roberts, 2018a; Roberts, 2018).

\ ¥

m But what about the effect of offline repression on online dissent?



Theoretical Expectations

m How might repression deter or mobilize online dissent?
m Direct deterrence (Oberschall, 1973; Jenkins and Perrow, 1977; Tilly, 1978)
m Indirect deterrence (Walter, 1969; Durkheim, 1984)

m Backlash (Sullivan and Davenport, 2017; Young, 2017; Hassanpour, 2014;
Hobbs and Roberts, 2018b; Jansen and Martin, 2015; Nabi, 2014; Roberts,

2018)
m Effects might vary by:
m Actor
m Behavior

m Time



The Saudi Twittersphere

m Saudi Arabia is an absolute monarchy and theocracy.

“Saudis live under repression, in fact we breathe repression with
the air; it haunts us in our dreams. It is our hell before we
encounter hell. Even our appearance, streets, and houses are
designed by repression. Repression has shaped the media, religion,
security services, universities, and institutions.”

m Social media has provided an alternative space for political
expression and civil society organizing.



The Saudi Twittersphere

m High Twitter penetration.
m 70% of the population is under 30.

Popular venue for political discussion
and dissent.

m BUT Saudi Arabia carries out severe
physical repression of Internet users.

Anti-Cybercrime and counterterrorism
laws.

m Posting content that “unsettles the social and national fabric...or
any actions that touch the unity and stability of the Kingdom
under any reason and in any form.”



Twitter Data

m Over 300 million tweets produced between 2010 and 2017.

m Arrested Opinion Leaders’ Tweets
m Engaged Followers' Retweets,

Replies, and Mentions
m Engaged Followers’ Tweets t’/‘
m Non-Arrested Opinion Leaders’
Tweets y y




Arrested Opinion Leader Tweets

m Saudis whose arrests for online dissent
were reported in press.

m 500K tweets from 36 arrested opinion

leaders.
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Engaged Follower Tweets

m All retweets, replies, or mentions of
arrested opinion leaders

m 32 million tweets by 8 million users

m Indirect effects on engagement

m All tweets from sample of engaged
followers

m Latest 3200 tweets from 30K ’\
engaged followers (48 million tweets) t,/

m Indirect effects on dissenting content



m Tweets by any Saudi Twitter user with
>10,000 followers (230 million tweets).

m Compare cosine similarity of their tweets to
tweets by arrested opinion leaders.

m Find top “matches” who weren't also
arrested.

m Indirect effects of repression on volume and
content.
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Google Search Data

m Daily and Weekly Saudi GO 08]'

trends

Google Search Data

m Measure of private interest in
arrested opinion leaders.

m Indirect effects of repression on
the Saudi public.




Empirical Strategy: Volume Analysis

m Do we observe deterrence or backlash in tweet volume,
engagement, or Google searches?

Post-Arrest Observed Change
m Non-parametric test: Compare
observed change to null
distribution generated by / Placebo Etimats
placebo date estimates.

/

m ITSA: Measure immediate and

. Arrest Date
longer term linear changes.

m Event Count Models:

Robustness test. \




Empirical Strategy: Crowd-Sourced Content Analysis

m Do we observe deterrence or backlash in the content of tweets?
m 3 native Arabic speakers on Figure8 coded each tweet according to
whether it:
m Criticized or supported the regime
m Criticized or supported government policies
m Criticized or supported Saudi society
m Called for collective action

m Coded large stratified random samples of tweets from one-month
pre-arrest, one month post-release, and one year post-release.



Tweet Examples

Critical (Regime/Society):

A society that denies and condemns and calls for the killing of
all who do not agree with its ideology, religion and beliefs, is a
society that is intellectually sick and the people suffer.

Adg 0,55 331gn ¥ (e S JIAT 1geit g Buki g ,AS GET paionedl
Cgaddl AlaTg b 5B aa ye padine 9o (ASladiase g
Supportive (Regime):

| followed the al-Arabiya interview with Prince Mohammed bin
Salman. The man truly impressed me: fluent in his speech,
transparent and practical, knows what he is talking about, his
vision is clear, the future is his focus.
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Arrested Opinion Leaders Tweet Less

Figure 1: Daily Tweet Volume Month Pre-Arrest vs. Post-Release
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Arrested Opinion Leaders Tweet Less

Figure 2: Change in Tweet Volume Month Pre-Arrest vs. Post-Release
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Arrested Opinion Leaders Tweet Less

Figure 3: Daily Tweet Volume Year Pre-Arrest vs. Post-Release

% 3
§600 . Arrest Date
E “. . ....°. . :
<400
()
£
>
;;200
>
'©
0O 0
o o
$ § < & 8

|
Days Pre—-Arrest and Post—Release

Disaggregated ITSA



Arrested Opinion Leaders Dissent Less

Figure 4: Change in Arrested Elite Tweet Sentiment
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Arrested Opinion Leaders Dissent Less

Figure 5: Change in Arrested Opinion Leaders Tweet Sentiment
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Engaged Followers Keep Engaging

Figure 6: Daily Tweet Volume Month Pre-Arrest vs. Post-Arrest
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Engaged Followers Keep Engaging

Figure 7: Daily Tweet Volume Year Pre-Arrest vs. Post-Arrest
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Engaged Followers Retweet More

Figure 8: Change in Retweet Ratios of Arrested Opinion Leader Tweets
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Engaged Followers Dissent More

Figure 9: Change in Engaged Followers Tweet Sentiment
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Engaged Followers Dissent More

Figure 10: Change in Engaged Followers Tweet Sentiment
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Public Keeps Searching

Figure 11: Daily Search Volume Month Pre-Arrest vs. Post-Arrest
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Public Keeps Searching

Figure 12: Weekly Search Volume Year Pre-Arrest vs. Post-Arrest
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Non-Arrested Keep Tweeting

Figure 13: Daily Tweet Volume Month Pre-Arrest vs. Post-Arrest
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Non-Arrested Keep Tweeting

Figure 14: Daily Tweet Volume Year Pre-Arrest vs. Post-Arrest
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Arrested Keep Dissenting

Figure 15: Change in Non-Arrested Opinion Leaders Tweet Sentiment
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Arrested Keep Dissenting

Figure 16: Change in Non-Arrested Opinion Leaders Tweet Sentiment
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Results Summary

Effect Type Actor Behavior Deterrent Backlash
Direct Arrested Opinion Leaders Tweet l
Volume
Direct Arrested Opinion Leaders Tweet l
Content
Indirect Engaged Followers Engagement '.
Volume
Indirect Engaged Followers Tweet '
Content
Indirect Saudi Public Search t
Volume
Indirect Non-Arrested Tweet
Opinion Leaders Volume
Indirect Non-Arrested Tweet

Opinion Leaders Content




What's the counterfactual?

m Alternative Interpretation

m Repression deterred everyone.

m Evidence of backlash
m Critical tweets reference arrests.
m Google Search co-occurring terms reference arrests.

m For some arrested opinion leaders there is a long lag between
dissenting tweets and arrests.



Discussion

m Where should we expect to see direct deterrence?
m Consequences of dissent are severe.

m Social movement organizations are largely absent.

m Where should we expect to see indirect backlash?
m Repression is public and overt.
m Observing repression does not change risk calculus.

m State lacks control over the online sphere.



Contributions

m First large-scale systematic study of the relationship between
offline repression and online dissent.

m Disentangles conflicting findings in the repression-dissent literature:
m Adjudicates between direct, indirect, and downstream effects.
m Disaggregates the effects of repression by actor, behavior, and time.

m Provides evidence from “black box" context.

m Substantive implications for how information is controlled in the
digital age.



Thank You!
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Why repress?

m Institutional culture (Blaydes, 2018; Gurr, 1988)

m Online strategies are infeasible or can backfire (Hassanpour, 2014;
Hobbs and Roberts, 2018a; Jansen and Martin, 2015; Nabi, 2014; Roberts,
2018).

m Targeted repression might induce broader self-censorship (Stern and
Hassid, 2012).

m The goal might not actually be to curtail online dissent!



Engaged Followers Keep Engaging (No Indirect Deterrent)

Figure 17: Daily Tweet Volume Month Pre-Arrest vs. Post-Arrest
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Engaged Followers Keep Engaging (No Indirect Deterrent)

Figure 18: Daily Tweet Volume Year Pre-Arrest vs. Post-Arrest
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Arrested Opinion Leaders Tweet Less (Direct Deterrent)

Figure 19: Change in Tweet Volume Year Pre-Arrest vs. Post-Release
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Engaged Followers Keep Engaging (No Indirect Deterrent)

Figure 20: Daily Tweet Volume Month Pre-Arrest vs. Post-Arrest
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Engaged Followers Keep Engaging (No Indirect Deterrent)

Figure 21: Daily Tweet Volume Year Pre-Arrest vs. Post-Arrest
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Public Keeps Searching (No Indirect Deterrent)

Figure 22: Daily Search Volume Month Pre-Arrest vs. Post-Arrest
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Public Keeps Searching (No Indirect Deterrent)

Figure 23: Weekly Search Volume Year Pre-Arrest vs. Post-Arrest
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Non-Arrested Opinion Leaders Keep Tweeting (No Indirect

Deterrent)

Figure 24: Daily Tweet Volume Month Pre-Arrest vs. Post-Arrest
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Non-Arrested Opinion Leaders Keep Tweeting (No Indirect

Deterrent)

Figure 25: Daily Tweet Volume Year Pre-Arrest vs. Post-Arrest
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Dissaggregated

Figure 26: Disaggregated Effect of Political Imprisonment on Volume of
Mentions and Retweets of Imprisoned Opinion Leaders
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Google Trends: Dissaggregated

Figure 27: Disaggregated Effect of Political Imprisonment on Google Searches
for Imprisoned Opinion Leaders
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Figure 28: Disaggregated Effect of Political Imprisonment on Non-Imprisoned
Opinion Leader Tweet Volume
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Arrested Opinion Leaders: ITSA Tweet Volume

Figure 29: Effect of Imprisonment on Arrested Opinion Leaders Tweet Volume
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Engaged Followers: ITSA Engagement Volume

Figure 30: Effect of Imprisonment on Daily Engagement Volume
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Saudi Public: ITSA Google Searches

Figure 31: Effect of Imprisonment on Daily/Weekly Search Volume
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Non-Arrested Opinion Leaders: ITSA Tweet Volume

Figure 32: Effect of Imprisonment on Daily Tweet Volume
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Distribution of Tweet Content

Figure 33: Distribution of Tweet Content
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Intercoder Agreement

Table 1: Average Intercoder Agreement

mean sd

policies 0.91 0.16

regime 091 0.17

society 0.93 0.15
collective action  0.99 0.05

Average intercoder agreement by category among the three human
coders that coded each tweet on Figure8.
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Collective Action Content Results

Figure 34: Change in Average Number of Tweets Calling for Collective Action
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